
66 The Delphi Magazine Issue 72

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Bug With Global Variables?

QI’ve found what looks like a
bug in the compiler’s treat-

ment of global variables. On the
global variables help page it states
that they are initialised to zero by
default. However, in a trivial
application I can prove this to be
incorrect (see Listing 1 and Figure
1). Is this a known bug?

AThe section in the help that
makes the statement re-

ferred to in the question has
changed as Delphi versions have
come and gone: in fact I cannot find
any such statement in the help for
Delphi 1 or 2. However, looking up
global variables in Delphi 3, then
choosing Variable declarations
gives this text:

If a global variable declaration
does not explicitly specify an initial
value, the memory occupied by the
variable will initially be set to zero.

Similarly, looking up global
variables in Delphi 4 or later gives:

If you don’t explicitly initialize a
global variable, the compiler
initializes it to 0. Local variables, in
contrast, cannot be initialized in
their declarations and contain
random data until a value is
assigned to them.

After reading this information,
and the short program in Listing 1,
anyone would see the behaviour
demonstrated in Figure 1 as a bug.
However, this is not the view of
Borland. According to Chief Delphi
Architect, Chuck Jazdzewski, this
behaviour is as designed. The logic
goes as follows:

I and J, in this case, are consid-
ered local to the begin..end block
that follows and are allocated by the
compiler as if they were declared
to be local variables of that
‘procedure’. If there was a real pro-
cedure declaration between the vari-
able declaration and the begin..end,
they would be treated as global
variables.

So, because the variables are
only accessed by the main pro-
gram block, and there are no other
subroutines around, the compiler
decides to treat it as a procedure
with local variables. Given this
extra information, it all becomes
clear, but the online help certainly
doesn’t help us arrive at this con-
clusion for ourselves. Clearly, to fix
(or rather to work around) the
problem, you can define a dummy

subroutine below the variables in
the project source file.

Record Property Issues

QI have a few record proper-
ties being used in my appli-

cation and I’ve bumped into some
anomalous compiler behaviour
with them. I can assign a record to
a record property as expected. I
can also use a with clause and as-
sign to the individual fields of the
record property. However, I can-
not make a direct assignment to
any field of the record property.
Why the difference in behaviour
with a with and without a with?

ALet’s have a good look at this
problem to find out what’s

going on. Listing 2 shows a sum-
mary of what has been described
in the question. Assigning a whole
record to the record property is
acceptable to the compiler: no
surprises there. The next state-
ment in the listing shows what
the compiler will not accept. At-
tempting to write directly to a field
of the record property is appar-
ently forbidden, so let’s look at
why this is.

The first thing to remember is
that a property is not the same as a
variable. It has no storage space of
its own, and you cannot pass a
property to a subroutine’s var
parameter. A property is a mecha-
nism that is defined in terms of a
data type, and what happens when
it’s read from and written to. Any
operation that reads from the
property is substituted by the
compiler with either a read from
some data field specified in the
property definition or, alterna-
tively, a call to a specified function.
Similarly, any operation that
assigns a value to a property is
substituted with either an
assignment to the data field, or a

program Project1;
{$OPTIMIZATION ON}
uses
Dialogs, SysUtils;

var
I: Integer; //should default to 0
J: Integer = 1;

begin
I := J-I; //I should be 1 now
ShowMessage(IntToStr(I)); //should display 1 in a dialog, but won't

end.

➤ Listing 1: A trivial project using
a ‘global’ variable.

➤ Figure 1: Unexpected output
from the program in Listing 1.

August 2001 The Delphi Magazine 67

procedure call with the assigned
value being passed as a parameter.

When you assign to a field of a
record variable, the compiler will
identify the offset that the field
starts at, relative to the start of the
variable, and write to the appropri-
ately sized memory block starting
at that address, thereby updating
the appropriate portion of the
record variable. There is no equiv-
alent concept with properties.

When you place a property on
the left side of an assignment state-
ment, the idea is that you are writ-
ing a new property value. The
property concept revolves around
properties having a value assigned
to them. There are no special cases
where some types of properties
can have values assigned to a small
portion of them. After all, if the
property has its write operation
defined in terms of a procedure
call, there is no way for the com-
piler to control what happens in
that routine.

So, in short, when you have a
record property, you can only
assign a whole record to it. If you
want to update a single field of the
record, read the whole record into
a temporary variable, update the
field and write the whole record
back.

Now let’s look at the last state-
ment in Listing 2. On the surface,
the use of the with clause looks like
syntactic sugar: you’d expect to
get the same results (a failed com-
pilation) as in the previous case
without it. However, this time the
compiler is fooled into thinking the
statement is an acceptable
request. The with clause causes
the compiler to read the property
first of all, and then assign the
specified value to its Field1 field.

Assuming the property read
operation is implemented by a
direct data field read, the read
operation will return a reference to
the record data field, and the
assignment will assign directly to
the Field1 field. However, there are
at least two scenarios where things
will go bad and give unexpected
results.

Firstly, if the property write
operation is defined in terms of a
procedure call, which validates the

record before actually making the
assignment to the underlying data
field, this code will be skipped.
This is because the compiler will
be assigning directly to the under-
lying data field without going
through the property writer
routine.

Secondly, if the property read
operation is defined in terms of a
function call, no value will be
assigned at all. When the compiler
reads the property, the function
call will return a temporary record,
which is a copy of the real underly-
ing data field. The assignment will
update a field of this temporary
record, leaving the original one
completely untouched.

The fact that the with clause
record property field update is
accepted by the compiler is con-
sidered to be a bug. You should get
a compiler error because of the
chances of things going wrong, just
as you do when not using a with
clause. Unfortunately, this seems
to be a difficult case to detect, and
so fixing the problem is on hold for
the moment (the bug is present in
Delphi 6).

Delphi ToolBar Problem

QSometimes, when Delphi 5
crashes, the IDE loses all of

the customisation I have done to
its toolbars. Then I have to manu-
ally put every icon and function
back into my preferred locations,
which is a tedious task to say the
least.

Is there some way of saving and
restoring the IDE toolbar custom
format? Or can you tell me where
that information is stored?

AYes, you can save this infor-
mation quite readily as it is

stored in the Windows registry in
its own special area. You should
set up toolbars as you like in
Delphi, then perhaps close Delphi
just to be sure it has stored the
changes in the registry. Next you
should launch the registry editor
(by running RegEdit.exe from the
Windows Run... dialog). Navigate
your way down the relevant
branches of the registry until you
reach

HKEY_CURRENT_USER\Software\
Borland\Delphi\5.0\Toolbars

which is where the information is
stored. You can now export this
section of the registry by choosing
Registry | Export registry file,
which will prompt you to save a
.REG file containing all this infor-
mation. Keep this file somewhere
handy and, if Delphi crashes again,
you can simply double-click it in
Explorer to restore all the settings
as you want them (make sure
Delphi is not running when you
do this).

Of course, the usual caveats
regarding messing with the regis-
try apply here with respect to
doom and gloom for your PC if you
make a hash of it, but we’re all
grown-up programmers, aren’t
we? I generally tend to omit such
warnings from this column.

Figure 2 shows all the IDE main
window toolbars, menu bar and
component palette stored in this
registry key, and also shows some

type
TTestRec = record
Field1: Integer;

end;
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
FTestRec: TTestRec;

public
property TestRec: TTestRec read FTestRec write FTestRec;

end;
...
procedure TForm1.FormCreate(Sender: TObject);
const
Rec: TTestRec = (Field1: 10);

begin
TestRec := Rec; //compiles
TestRec.Field1 := 99; //gives error: Left side cannot be assigned to
with TestRec do Field1 := 99; //compiles

end;

➤ Listing 2: Record property
handling inconsistency.

68 The Delphi Magazine Issue 72

of the information stored for one of
the toolbars. You should just be
able to make out that it is a
streamed version of the toolbar.
The toolbars are simply streamed
into the registry as they are
modified and streamed out of the
registry as Delphi starts up.

AVs When
Destroying Components

QI am programmatically creat-
ing some objects, including

speedbuttons, with a TScrollBox as
its parent. When the user clicks the
speedbuttons the OnClick event is
fired and inside of it I destroy all
the objects created (including the
speedbutton that fired the event)
and I create new objects. This
happens several times before the
program is closed.

The process mostly works fine,
but sometimes an Access Violation
occurs. Normally the AV occurs on
the TSpeedButton.UpdateTracking
method. I have checked and I can’t
see anything wrong. I don’t know if
there is a problem destroying the
buttons inside the OnClick event,
so could you clarify the situation
for me?

AObjects can be freed either
by calling their Free method

(which is definitely the way you

should do it) or by calling their
destructor, Destroy, which is gen-
erally not recommended. The rea-
sons for this advice were covered
in The Delphi Clinic way back in
Issue 29 (January 1998).

In brief, Free checks that it is not
being called through an obviously
invalid object reference (with a nil
value), before calling the destruc-
tor for you. Free is therefore a safer
method to call than the destructor
as it implicitly avoids some Access
Violations. However, that doesn’t
answer the question.

If you look up the TObject.Free
method in the online help, you
should see the following text,
which explains the situation:

Warning: Never explicitly free a
component within one of its own
event handlers or free a component
from the event handler of a compo-
nent it owns or contains. For exam-
ple, don’t free a button in its OnClick
event handler or free the form that
owns the button from the button’s
OnClick event.

This text is in most versions of
the Delphi help system (it got lost
in Delphi 2 and 3, but was back in
version 4) and strongly advises
against what the questioner is
doing. The problem is that a com-
ponent’s event handler is a routine
called by some code in the compo-
nent itself. When the event handler
finished, the execution flow
returns to the code in the compo-
nent. If the component has been
freed by the event handler, then all

➤ Figure 2: Looking at one of
the toolbars as it is stored in
the registry.

its instance data space will have
been freed. Any attempt by the
component to reference any of its
instance data will therefore be
invalid.

Depending on what has hap-
pened to the memory block that
held the instance data, one of a
number of things may happen. If
the memory block is waiting to be
re-used, this will probably give no
evident symptom. If the memory
block has already been re-used, it
will trash the new data stored
there. If the memory block has
been completely freed back to the
Operating System, then it will
cause an Access Violation. Clearly,
the questioner is finding no
evident symptoms for a while, but
ultimately is faced with an Access
Violation.

Word Automation Query

QI have been reading many
published articles (yours

and many others) about Delphi
and Word Automation. I was won-
dering if I may ask you a question
on this particular topic. I have
been able to automate just about
all aspects of Word that I require,
except the facility to insert a tab
key. I am able to set a tab stop onto
the ruler at any point, and I can do
a full left indent that moves an
entire paragraph, but I cannot au-
tomate a tab key to move text over
to a set tab stop. How do I do it?

AIn case anyone else is inter-
ested in reading them, I have

a couple of Automation articles on
my website. Writing And Con-
trolling Automation Servers In
Delphi is the first one, and shows
how you control Automation serv-
ers (including Microsoft Word)
and also shows how to write them.
This is then followed by More Auto-
mation In Delphi, which looks at
how to include more advanced fea-
tures in your own Automation
servers. You can access both of
these (and a bunch of others) by
clicking on the Articles link from
my home page (www.blong.com).

Back to the question (or more
correctly, back to the answer). A
tab character is equivalent to

70 The Delphi Magazine Issue 72

character 9 in the ANSI character
set (in the same way that a capital
A is character 65). Knowing this
makes the answer quite straight-
forward. Listing 3 shows some
code that inserts two tab charac-
ters in a Word document, one using
a local constant, and one that
simply embeds character 9 in a
string. After doing this it ensures
that all non-printable characters
can be seen, so you can verify the
tab characters have been passed
across successfully (see Figure 3).

Reading Excel Spreadsheets

QI am stuck with a problem
related to Automation, using

Excel as an Automation server. I
would appreciate it if you could
help me out. All I want to do is to
open a file and walk through a
sheet cell by cell reading the cells’
content. I tried two approaches to
get the work done, firstly

CreateOleObject(
‘Excel.Application’)

and secondly the TExcelApplica-
tion component from the Servers
page on the component palette.

In both cases, sooner or later I
came up against an error message:
Member not found. As far as I can
see I am following the syntax
prescribed in the Excel Visual
Basic online help documentation.
What’s wrong?

AThere are a number of differ-
ences between the syntax

used in VBA (as found in the VBA
for Excel help file, VBAXL8.HLP in
the case of Excel 97) and that used
in Delphi. For example, strings are
delimited by single quotes in
Delphi and double quotes in VBA.
In VBA, statements are implicitly
relative to the Application object,
whereas in Delphi the Variant that
gets set by a call to CreateOleObject
is the equivalent of the VBA Appli-
cation object. In VB, properties are
typically indexed by values being
passed in parentheses (round
brackets), whereas Delphi will ex-
pect square brackets. VBA doesn’t
require statement separators, but
Delphi uses semicolons. The list
goes on...

To look into this question, I
made a simple spreadsheet con-
taining the release dates of all
Borland’s RAD compiler products
(Versions.xls). Then I wrote an
application (ReadXLSheet.dpr) to
load it and read all of the cell
values. This version of the project

uses CreateOleObject to connect to
Excel and the return value is
stored in a Variant, for late bound
Automation.

To open a spreadsheet file, you
call the Open method of the Appli-
cation object’s Workbooks collec-
tion property. To read an
individual cell value, the Applica-
tion object has a property called
ActiveSheet, which returns the
active worksheet in the current
spreadsheet file. ActiveSheet
offers a Cells property, which is a
Range object representing all the
cells in the worksheet.

A Range object has a default
indexed property that allows you
to access any individual cell in
the range by treating it as a two-
dimensional array. Doing so
returns another range for that cell,
leaving you to read that range’s
Value property.

Listing 4 shows the code from
the program looping through the
cells reading the values into a
string grid. The string grid has its
size set based on the number of
cells in the worksheet. You can see
the SpecialCells method being
used to activate the one-cell range,
which is the last cell on the
worksheet. The running program
is shown in Figure 4.

This approach of reading indi-
vidual cell values works fine for
small worksheets, but will cause
problems for larger ones. Each cell
read requires the execution path
to make two round trips to the
Automation server and, obviously,
as the number of cells increases,

uses
ComObj;

...
procedure TForm1.Button1Click(Sender: TObject);
var
W: Variant;

const
vbTab = #9;

begin
W := CreateOleObject('Word.Application');
W.Visible := True;
W.Documents.Add;
W.Selection.TypeText('Hello'#9'world');
W.Selection.TypeParagraph;
W.Selection.TypeText('Delphi' + vbTab + '5');
W.Selection.TypeParagraph;
W.ActiveWindow.ActivePane.View.ShowAll := True

end;

➤ Listing 3: Inserting a tab
character in a Word
document.

➤ Figure 3: Tab characters sent
to Word through Automation.

August 2001 The Delphi Magazine 71

uses
ComObj;

procedure TForm1.FormCreate(Sender: TObject);
var
XL, XLSheet: Variant;
X, Y: Integer;

const
xlCellTypeLastCell = $B;

begin
XL := CreateOleObject('Excel.Application');
XL.Workbooks.Open('c:\Versions.xls');
XLSheet := XL.ActiveSheet;
XLSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate;
SG.ColCount := XL.ActiveCell.Column;
SG.RowCount := XL.ActiveCell.Row;
//String grid cells are numbered from 0
//XL cells are numbered from 1
//Also, XL cells are indexed as (row, column), not (column, row)
for X := 0 to SG.ColCount - 1 do
for Y := 0 to SG.RowCount - 1 do
SG.Cells[X, Y] := XLSheet.Cells[Y + 1, X + 1].Value;

XL.Quit
end;

the time taken to do this will
increase.

A better solution might be to
read the whole cell range as a
single Variant array value, and
then loop through elements of the
array in the client program. This
means that no matter how many
cells are being read, only one call is
made (which equates to two round
trips). ReadXLSheet2.dpr is a mod-
ified project that takes this more
efficient approach, and the
changes can be seen in Listing 5.

You can also achieve the goal
using the TExcelApplication com-
ponent from the component
palette Serverspage (see Listing 6).
Notice, though, that the call to
open the workbook requires a

mass of parameters which are no
longer optional (as they were when
using a Variant). Fortunately, you
can pass EmptyParam as a place-
holder for all of them except the
last one, which is a locale identifier
(0 means use the default locale).

As well as a TExcelApplication
component, I also dropped a
TExcelWorkSheet component on the
form with its ConnectKind property
set to ckAttachToInterface. When
the TExcelApplication component
obtains a reference to a WorkSheet
object, it can be represented by

➤ Listing 5: A more efficient approach to reading multiple Excel cells.

this new component thanks to a
call to the ConnectTo method.
Notice that the ActiveSheet prop-
erty is actually defined as an
IDispatch interface, rather than a
WorkSheet interface (or _WorkSheet
as it is defined), hence the use of
the as operator to query for the
correct interface.

One additional change from
before is that the Range interface
returned by the Cells property

procedure TForm1.FormCreate(Sender: TObject);
var
XL, Range: Variant;
X, Y: Integer;

const
xlCellTypeLastCell = $B;

begin
XL := CreateOleObject('Excel.Application');
XL.Workbooks.Open('c:\Versions.xls');
//Select last cell
XL.ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate;
//Set string grid size
SG.ColCount := XL.ActiveCell.Column;
SG.RowCount := XL.ActiveCell.Row;
//Read all cells from top left to last cell as a Variant array
Range := XL.Range['A1', XL.Cells[SG.RowCount, SG.ColCount]].Value;
XL.Quit;
//String grid cells are numbered from 0, XL cells are numbered from 1
//Also, XL cells are indexed as (row, column), not (column, row)
for X := 0 to SG.ColCount - 1 do
for Y := 0 to SG.RowCount - 1 do
SG.Cells[X, Y] := Range[Y + 1, X + 1];

end;

procedure TForm1.FormCreate(Sender: TObject);
var
X, Y: Integer;
Range: Variant;

const
DefLocale = 0; //Default locale value

begin
XL.Workbooks.Open('c:\Versions.xls', EmptyParam,
EmptyParam, EmptyParam, EmptyParam, EmptyParam,
EmptyParam, EmptyParam, EmptyParam, EmptyParam,
EmptyParam, EmptyParam, EmptyParam, DefLocale);

XLSheet.ConnectTo(XL.ActiveSheet as _WorkSheet);
//Select last cell
XLSheet.Cells.SpecialCells(xlCellTypeLastCell,
EmptyParam).Activate;

//Set string grid size
SG.ColCount := XL.ActiveCell.Column;

SG.RowCount := XL.ActiveCell.Row;
//Read all cells from top left to last cell
//as a Variant array
Range := XL.Range['A1', XL.Cells.Item[SG.RowCount,
SG.ColCount]].Value;

XL.Quit;
XLSheet.Disconnect;
XL.Disconnect;
//String grid cells are numbered from 0
//XL cells are numbered from 1
//Also, XL cells are indexed as (row, column), not
//(column, row)
for X := 0 to SG.ColCount - 1 do
for Y := 0 to SG.RowCount - 1 do
SG.Cells[X, Y] := Range[Y + 1, X + 1];

end;

➤ Listing 6: Reading a
spreadsheet using early bound
Automation.

➤ Listing 4: Using a Variant to
read a spreadsheet’s content.

➤ Figure 4: The spreadsheet
content read into a Delphi
string grid.

August 2001 The Delphi Magazine 72

does not have a default array prop-
erty defined in the type library (as
far as Delphi sees) so we must
explicitly refer to the Item array
property this time. Apart from
these changes, the code stays
much the same as it was before.
This COM version of the program is
called ReadXLSheet3.dpr.

For more information on reading
and writing values to and from
Excel spreadsheets using the COM
interface wrapper component
(TExcelApplication), there is an
article in UNDU (the Unofficial
Newsletter of Delphi Users) that
looks at the subject. It is written by
Christian Ebenegger and Thierry
Revillard and can be found at

www.undu.com/Articles/
010316c.html

This is where I picked up the tip
about how to identify the last cell
in the worksheet, and also the effi-
ciency tip about returning a range
of cell values as a Variant.

Incidentally, if you have not
checked out the offerings of UNDU
before, I recommend you visit
www.undu.com soon. You will find
many invaluable articles, tips and
tricks.

Updates
This month there are a couple of
updates to previous entries in The
Delphi Clinic. The first one relates
to something all the way back in
Issue 33 (May 1998) where I cov-
ered how to update Windows
system files that could well be in
use, using the MoveFileEx API with
the NT-specific MoveFile_Delay_
Until_Reboot flag.

At the time, I didn’t have access
to a Windows NT machine and so
wrote the text based on what the
Microsoft documentation seemed
to tell me. The example revolved
around updating the Common
Controls library, ComCtl32.dll, and
you can see the suggested code in
Listing 7.

This is supposed to replace
ComCtl32.dll with the new file
ComCtl32.new when NT restarts
(in other words when the file is not
in use). Thanks are due to Michel
Lucas who tried this code out and

found it didn’t work. After a little
research, Michel pointed out that
the Microsoft documentation
recommends deleting the old file
before overwriting it. That changes
Listing 7 to Listing 8, which works
fine.

Another email came in from Neil
Haughton who commented on
previous coverage of ways of send-
ing emails from Delphi programs
(covered in The Delphi Clinic in
Issue 60 and Issue 69). I have

looked at using MAPI, automating
Outlook and running a URL that
starts off an email message.
Neil points out that the TNMSMTP
component on the Delphi FastNet
component palette tab is very
straightforward to use.

This component will log into an
SMTP server, create a message
and send it for you, and some
simple code that does this is
shown in Listing 9. Thanks Neil.

MoveFileEx('C:\Windows\System32\ComCtl32.New',
'C:\Windows\System32\ComCtl32.Dll',

➤ Listing 7: Erroneous code for updating a system file on Windows
NT/2000.

➤ Listing 8: Correct code for updating a system file.

procedure TForm1.SendEmail;
var
NMSMTP: TNMSMTP;
begin
NMSMTP := TNMSMTP.Create(Application);
try
with NMSMTP do begin
Host := 'TheMailServer';
UserId := 'SMTPuserID';
try
Connect;
ClearParams := True;
SubType := mtPlain;
EncodeType := uuMime;
PostMessage.LocalProgram := Application.Title;
PostMessage.FromAddress := 'MyEmailAddress';
PostMessage.ToAddress.Add('DestinationEmailAddress');
PostMessage.Body.Add('Some text');
PostMessage.Body.Add('Some more text');
PostMessage.Subject := 'Email subject';
SendMail;

except
on E: Exception do
ShowMessageFmt('Unable to send email to caller'#13#13'"%s"',
[E.Message]);

end;
end;

finally
FreeAndNil(NMSMTP)

end
end;

➤ Listing 9: Sending an email with the FastNet TNMSMTP component.

MoveFileEx('C:\Windows\System32\ComCtl32.Dll', nil, MoveFile_Delay_Until_Reboot);
MoveFileEx('C:\Windows\System32\ComCtl32.New',
'C:\Windows\System32\ComCtl32.Dll', MoveFile_Delay_Until_Reboot);

	Bug With Global Variables?
	Record Property Issues
	Delphi ToolBar Problem
	AVs When Destroying Components
	Word Automation Query
	Reading Excel Spreadsheets
	Updates

